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Monte Carlo Testing and Verification of 
 Numerical Algorithm Implementations  
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Abstract � We develop a statistical test to assess correctness of 
a numerical algorithm implementation. We propose a Monte 
Carlo method to estimate the accuracy of an approximation 
algorithm without knowing a true value to be computed. The 
methodology is illustrated on computation of partial volumes in 
breast tissue simulation.
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I. INTRODUCTION 

Validation of numerical software plays an important role in 
software development cycle. For the purpose of this study, we 
consider validation to consist of: 1) software testing; and 2) 
software verification. Software testing [1] is a set of methods 
utilized to determine whether the algorithm in quest is 
correctly implemented. Software verification comprises 
techniques that can determine the adequacy of the developed 
algorithm to a task in quest. Software testing is frequently 
performed by providing a limited set of test cases with known 
outputs to the implementation. However, obvious drawback of 
this approach is difficulty to examine a variety of potential 
inputs to software and need to evaluate the test cases either 
manually or using an existing implementation of another 
algorithm for the same task. In software verification, it is 
often of interest to determine the accuracy of an 
approximation algorithm; here, techniques of numerical 
analysis may provide error bounds, but the bounds may apply 
only to a limited class of inputs, or the bounds may be loose 
or only of theoretical value [2]. Alternatively, validation can 
be performed empirically. However, when using this 
approach, an issue is that the accurate solution to the 
approximated problem is not available. 

In this study, we propose the application of Monte Carlo 
approach [3] for validation of a class of numerical software. 
The method is developed for a class of multiple integral 
computation problems and demonstrated on a related problem 
of partial volume computation [4].  After the statement of the 
problem and preliminary considerations in Section II, in 
Section III we develop a statistic that has standard normal 
distribution asymptotically when an algorithm implementation 
is correct.  
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In Section IV, we demonstrate the estimate of the 
approximation error and the bounds for the standard deviation 
of the estimate. In Section V we discuss the application of the 
proposed method on validation of partial volume computation. 
Section VI contains discussion and conclusive remarks. 

II. PRELIMINARIES 

   Consider a function  that depends on a 
tuple p of random parameters, and let 

,
 For T realizations of random parameters pi, i=1,�,T 

and corresponding functions, , our goal is 
to calculate integrals:  

. 
(1) 

Note that the integrals, Eq. (1), can be treated as random 
values described by a probability density function . 

Assume that integrals, Eq. (1), can be approximated as: 

(2) 

Where  are 
suitable chosen functions such that the exact computation of 
Eq. (2) is feasible. 

Note that an integral from Eq. (1) can also be 
approximately computed using the Monte Carlo approach as 
follows: a) Uniformly sample NMC independent points 

; b) Determine: 

 ; (3) 

c) Compute an approximation as: 

                                 .                                          (4) 

Note that, for a randomly chosen , the probability 
that is equal to . Hence, a 
random variable  follows a Binomial distribution with 
expectation  and variance  [5]. If we 
define: 

                         ,                                (5) 
the random variables have the following conditional 
moments: 
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,                                (6) 

.                        (7) 
Let�s further define: 

,                               (8) 
,                                  (9) 

and consider an ensemble of functions . It is obvious that 
. Hence, we can write: 

      ,    (10) 

where the expectation is taken through random realizations of 
 and the ensemble of functions, and  is a 

probability density function of the true value of integral. 
Observe that, from Eq. (5), (8) and (9) follows: 

,                              (11) 

and, due to Eq. (10): 

.              (12) 

Note also that due to Eq. (7),  

.          (13) 

Following the procedure from [4] we can obtain: 

                     (14) 

III. SOFTWARE TESTING 

Consider now an important case when , i.e., when  
belong to a class of functions for which the approximation 
error of Eq. (2) is zero. Hence,  

,                                         (15) 

 and (see Eq. 12): 

                                                          (16) 

Further, assume that realizations  are independent. In this 
case, due to Eq. (15), from Eq. (13),  

                             .                            (17) 

Consider random variables X and Y defined as follows: 

,                                         (18) 

.              (19) 
Due to Lindberg-Levy Central Limit Theorem [6], for large 
enough T,   has approximately normal distribution 
with zero mean and variance: 

.                                        (20) 

Similarly, for large enough T,  has approximately 
normal distribution with zero mean and variance: 

.                                 (21) 

Therefore, a random variable  
 
       ,  (22) 

is asymptotically Gaussian, with zero mean and variance  

,                        (23) 

where  is a covariance defined [7] as: 

.                 (24) 

Note that due to Eq. (16) and Eq. (19) we can write: 

,                (25) 
where 

.                     (26) 

On the other hand, a conditional expectation of product XY, 
given values of  is: 

 

= 

      .               (27) 

Due to Eq. (16), (15), (7) and (26) we finally obtain: 

.          (28) 

From Eq. (28) directly follows: 

.                           (29) 

By combining Eq. (24), (25) and (29) we obtain: 

.           (30) 

Note, however that  are independent and identically 
distributed. Hence: 

, (31) 
and, from Eq. (30): 

.                  (32) 

By combining Eqs. (20), (21), (23) and (32) we obtain: 
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.                         (33) 
 

Assume that a numerical algorithm performing integration 
Eq. (2) is implemented. Consider a set of functions fi , i,�,T 
where the algorithm provides an exact solution.  Under H0 that 
the algorithm is correctly implemented, for large enough T, 
random variable Z defined by Eq. (22) has approximately 
Gaussian distribution with variance defined by Eq. (33). 
Hence, we can compute test statistic Z* as: 

,                                        (34) 

where  is an estimate of : 

,                       (35) 

and s denotes sample standard deviation (e.g, 

 where ).   

We use two-sided test with the p-value calculated as:  

,                     (36) 

and H0 is rejected if the  is smaller than a preset 
threshold (e.g., 0.005). 

III. SOFTWARE VERIFICATION

Consider random variables X (see Eq. (18)) and Y� defined 
as follows: 

         (37) 

It is obvious that X and Y� represent unbiased estimates for 
and  based on observed T realizations of 

functions . 
Due to Lindberg-Levy Central Limit Theorem [6], 

 has approximately normal distribution with zero mean 
and variance . (Note that  here denotes a 
variance of a random variable.) Therefore, and due to Eq. 
(12), a random variable  defined as: 

 

,   (38) 

is asymptotically Gaussian, with mean equal to  and 
variance  which square root is bounded as: 

.                               (39) 

Hence, Z�, as defined by Eq. (38) is a consistent estimate of 
. The boundaries for standard deviation of the estimate 

can be obtained from Eq. (39) when a squared root  of 

variance is estimated using a sample standard deviation s [8] 
as: 

,                              (40) 
where: 

           (41) 

.         (42) 

IV. PRACTICAL APPLICATION 

The methods discussed in Sections III and IV are applicable 
whenever a set of values  can be 
approximated using the Monte Carlo approach (Section II and 
Eq. (4)) where  follows a Binomial distribution with 
expectation  and variance . In this section, 
we discuss their use in partial volume computation [4;9;10].  

The problem of partial volume computation can be 
described as follows: Given a three-dimensional unit voxel [0, 
1]3 and surfaces Si,l, l=1,�,s, find a measure of volume 
bounded by the surfaces and the voxel boundaries (a partial 
volume). In [4], cases when s=1 or s=2 are discussed. 
Surfaces Si,l are approximated using planes Pi,l, l=1,2 and 
values  are approximated by measures  of volumes 
bounded by the planes and the voxel boundaries. Note also 
that  can be estimated using the Monte Carlo approach by 
randomly placing NMC points inside the unit voxel and 
counting the fraction, Eq. (4), of the number of points Ni 
fitting into a partial volume. The surfaces Si are depend on 
parameters which can be considered random. It is easy to 
observe that the partial volume computation as defined here 
satisfies the assumptions from Sections II-IV.  

Following the approach from Section III, we tested 
implementations of Algorithm A.3 from [4]. We randomly 
generated T pairs of planes Pi,l, l=1,2 and calculated measures 

 using the implementation. We also estimated  using 
 and subsequently utilized Eqs. (22), (34)�(36) to test 

correctness of the implementation. The initial implementation 
was tested using T=10,000, . The test resulted 
in  and p-
value=1.6325e-31. Hence H0 (that this implementation was 
correct) was rejected. Examination of the histogram of 
obtained values   (Eq. (8)) indicated cases when the 
implementation did not work correctly. The subsequent 
(debugged) implementation was tested with a range of 
combinations of T and  The results, Table 1, consistently 
indicate that H0 cannot be rejected (p-value>0.2) which 
suggests the correctness of this implementation. 

With the approach from Section IV, we validated Algorithm 
A.2 from [4] using , for voxels that contain 
simulated skin and ligaments/compartmental tissue, see Table 
2. We recalculated  (Eq. (38)),  (Eq. (41)) and  
(Eq. (42)) for simulated breast phantom data from Table IV 
[4]. The comparison of Z� with the corresponding values of 
sample means MSEA [4] shows that | Z�- MSEA|<  which 
indicates that  is accurately computed. Further, the 
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difference between the approximate quantization error 
MSEq=2.09e-5 (as calculated in [4]) and Z�=1.952e-05 is 
smaller than corresponding  (1.622e-06). This justifies 
a hypothesis from [4] that the discrepancy between MSEq  and 
Z� can be explained by statistical fluctuations related to the 
Monte Carlo method.  

TABLE I 
COMPUTED P-VALUES FOR STATISTICAL TEST OF ALGORITHM FOR 

CORRECT IMPLEMENTATION OF ALGORITHM A.3 [4] OBTAINED FOR 
DIFFERENT COMBINATIONS OF  T AND  

T 1e6 1e5 1e4 1e5 1e4 5e6 1e6 1e5 
1e5 1e5 1e5 1e4 1e4 10 10 10 

p-value 0.971 0.831 0.242 0.966 0.987 0.615 0.574 0.846
 

TABLE II 
ESTIMATED APPROXIMATION ERROR (MEAN AND STANDARD DEVIATION 

BOUNDARIES) FOR ALGORITHM A.2 [4]: . MSEA FROM [4] 
CORRESPONDING TO Z�  IS INCLUDED FOR COMPARISON 

Voxels containing T    MSEA 
Skin 1,597,042 1.952e-

05 
1.622e-

06 
3.927e-

06 
2.01e-

05
Ligaments and 
compartmental 

tissue 

6,435,881 
 

4.330e-
04 

1.191e-
06 

2.368e-
06 

4.32e-
04

V. DISCUSSION AND CONCLUSIONS 

We propose to utilize Monte Carlo method for software 
verification. We use Monte Carlo not to calculate per se, but 
to validate the calculation�s performance using another 
method. Hence, the accuracy of the Monte Carlo 
approximation (that can be estimated using Eq. (14)) is of 
secondary importance.  

We develop a statistic (Eq. (34)) that has a standard normal 
distribution under the hypothesis that an algorithm is 
implemented correctly. We demonstrated that the approach 
can be applied to a practical problem of testing numerical 
software for computation of partial volume. In this case, 
manual evaluation of test cases needed to test a complex 
algorithm is not feasible.  

We utilize an important property that Monte Carlo and 
approximation errors are orthogonal (Eq. (10)) which results 
in the estimate of approximation error  (Eq. (38)). 
Assuming large enough number T of evaluations, we also 
demonstrated upper and lower bound for the standard 
deviation of the estimate (Eqs. (41), (42)). This distinguishes 
the proposed approach from other approaches that may 
provide only the point estimate of the approximation error. 
Note also that the proposed methods do not assume 
knowledge of correct values of the estimated variables Ii: 
instead, the knowledge of observable values  and Ia,i is 

sufficient. We demonstrated this approach on verification of 
software for partial volume computation [4]. We showed that 
the discrepancy between the theoretically minimal 
approximation error (due to quantization) and the 
approximation error estimated there can be explained by the 
standard deviation of the estimate.  

The proposed methodology is developed for a relatively 
narrow class of multiple integration problems. However, as 
demonstrated on computation of partial volumes, the approach 
can be easily extended whenever the estimation using an 
analog of Eq. (4) is possible and where  follows binomial 
distribution (see Section II).  

In Table I we demonstrated that the choice of NMC does not 
seem to be of predominant importance for software testing. 
Work in progress includes quantitative investigation of 
influence of NMC on estimation of . 
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