Monte Carlo Testing and Verification of Numerical AlgorithmImplementations

David D. Pokrajac¹, Abdullah-AI-Zubaer Imran¹, Predrag R. Bakic²

Abstract

We develop a statistical test to assess correctness of a numerical algorithm implementation. We propose a Monte Carlo method to estimate the accuracy of an approximation algorithm without knowing a true value to be computed. The methodology is illustrated on computation of partial volumes in breast tissue simulation.

Keywords - Software testing, M onte C arlo, Partial volume.

I. Introduction

Validation of numerical software plays an important role in software development cycle For the purpose of this study, we consider validation to consist of: 1) software testing; and 2) software verification. Software testing [1] is a set of methods utilized to detemine whether the algorithm in quest is correctly implemented. Software verification comprises techniques that can determine the adequacy of the developed al gorithm to a task in quest. Software testing is frequently performed by providing a limited set of test cases with known outputs to the implementation. However, obvious drawback of this approach is difficulty to examine a variety of potential inputs to software and need to evaluate the test cases either manually or using an existing implementation of another algorithm for the same task. In software verification, it is often of interest to determine the accuracy of an approximation algorithm; here, techniques of numerical analysis may provide error bounds, but the bounds may apply only to a limited class of inputs, or the bounds may be loose or only of theoretical value [2]. Alternatively, validation can be performed empirically. However, when using this approach, an issue is that the accurate solution to the approximated problemis not available.

In this study, we propose the application of Monte Carlo approach [3] for validation of a class of numerical software The method is developed for a class of multiple integral computation problems and demonstrated on a related problem of partial volume computation [4]. After the statement of the problem and preliminary considerations in Section II, in Section III we develop a statistic that has standard normal distribution asymptotical ly when an al gorithm implementation is correct.

[^0]In Section IV, we demonstrate the estimate of the approximation error and the bounds for the standard deviation of the estimate In Section V we discuss the application of the proposed method on validation of partial volume computation. Section VI contains discussion and conclusive remarks.

II. Preliminaries

Consider a function $f\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)$ that depends on a tuple p of random parameters, and let $0 \leq f\left(x_{1}, x_{2}, \ldots, x_{k-1}\right) \leq 1,\left(x_{1}, x_{2}, \ldots, x_{k-1}\right) \in D, D=$ $[0,1]^{k-1}$. For T real izations of random parameters $\mathrm{p}, \mathrm{i}=1, \ldots, \mathrm{~T}$ and corresponding functions, $f_{i}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)$, our goal is to cal cul ate integrals:

$$
\begin{equation*}
I_{i}=\iint_{D} f_{i}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right) d x_{1} d x_{2} \ldots d x_{k-1}, i=1, \ldots, T \tag{1}
\end{equation*}
$$

Note that the integrals, Eq. (1), can be treated as random values described by a probability density function $p d f\left(I_{i}\right)$.

Assume that integrals, Eq. (1), can be approximated as:

$$
\begin{gather*}
I_{a, i}=\iint_{D} g_{i}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right) d x_{1} d x_{2} \ldots d x_{k-1}, i= \\
1, \ldots, T, \tag{2}
\end{gather*}
$$

Where $g_{i}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)=F\left(f_{i}\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)\right)$ are suitable chosen functions such that the exact computation of Eq. (2) is feasible.

Note that an integral I_{i} from Eq. (1) can also be approximately computed using the Monte Carlo approach as follows: a) Uniformly sample $\mathrm{N}_{\text {MC }}$ independent points $\mathrm{x}_{j}=\left(x_{j, 1}, x_{j, 2}, \ldots, x_{j, k}\right) \in[0,1]^{k}, j=1, N_{M c} ;$ b) Determine:
$N_{i}=\left|\left\{\mathrm{x}_{j} \mid x_{j, k} \leq f_{i}\left(x_{j, 1}, x_{j, 2}, \ldots, x_{j, k-1}\right), j=1, \ldots, N_{M C}\right\}\right| ;$ (3)
c) Compute an approximation as:

$$
\begin{equation*}
I_{M C, i}=\frac{N_{i}}{N_{M C}} . \tag{4}
\end{equation*}
$$

Note that, for a randomly chosen $\mathrm{x}_{j} \in[\mathbf{0 , 1}]^{k}$, the probability that $x_{j, k} \leq f_{i}\left(x_{j, 1}, x_{j, 2}, \ldots, x_{j, k-1}\right)$ is equal to I_{i}. Hence, a random variable N_{i} follows a Binomial distribution with expectation $N_{M C} \boldsymbol{I}_{i}$ and variance $N_{M C} I_{i}\left(1-I_{i}\right)$ [5]. If we define:

$$
\varepsilon_{M C, i}=I_{M C, i}-I_{i},
$$

the random variables $\varepsilon_{M C, i}$ have the following conditional moments:

$$
\begin{align*}
& E\left(\varepsilon_{M C, i} \mid I_{i}\right)=\mathbf{0} \tag{6}\\
& E\left(\varepsilon_{M C, i}^{2} \mid I_{i}\right)=\frac{\boldsymbol{I}_{i}\left(1-I_{i}\right)}{N_{M C}} . \tag{7}
\end{align*}
$$

Let's further define:

$$
\begin{align*}
& \varepsilon_{i}=I_{M C, i}-I_{a, i}, \tag{8}\\
& \varepsilon_{A, i}=I_{i}-I_{a, i} \tag{9}
\end{align*}
$$

and consider an ensemble of functions $\boldsymbol{f}_{\boldsymbol{i}}$. It is obvious that $\varepsilon_{A, i}=\varepsilon_{A}\left(I_{i}\right)$. Hence, we can write:

$$
\begin{equation*}
E\left(\varepsilon_{M C} \varepsilon_{A}\right)=\int E\left(\varepsilon_{M C, i} \mid I_{i}\right) \cdot \varepsilon_{A}\left(I_{i}\right) p d f\left(I_{i}\right) d I_{i}=0 \tag{10}
\end{equation*}
$$

where the expectation is taken through random real izations of $\varepsilon_{M C, i}$ and the ensemble of functions, and $p d f\left(I_{i}\right)$ is a probability density function of the true value of integral.
Observethat, fromEq. (5), (8) and (9) follows:

$$
\begin{equation*}
\varepsilon_{A, i}=\varepsilon_{i}-\varepsilon_{M C, i} \tag{11}
\end{equation*}
$$

and, due to Eq. (10):

$$
\begin{equation*}
E\left(\varepsilon_{A}^{2}\right)=E\left(\varepsilon^{2}\right)-E\left(\varepsilon_{M C}^{2}\right) \tag{12}
\end{equation*}
$$

Note also that due to Eq. (7),

$$
\begin{equation*}
E\left(\varepsilon_{M C}^{2}\right)=\int \frac{I_{i}\left(1-I_{i}\right)}{N_{M C}} p d f\left(I_{i}\right) d I_{i}=\frac{E(I)-E\left(I^{2}\right)}{N_{M C}} . \tag{13}
\end{equation*}
$$

Following the procedure from [4] we can obtain:

$$
\begin{equation*}
E\left(\varepsilon_{M C}^{2}\right)=\frac{1}{N_{M C}-1}\left(E\left(I_{M C}\right)-E\left(I_{M C}^{2}\right)\right) . \tag{14}
\end{equation*}
$$

III. Software Testing

Consider now an important case when $f_{i}=g_{i}$, i.e., when f_{i} belong to a class of functions for which the approximation error of Eq. (2) is zero. Hence,

$$
\begin{equation*}
I_{i}=I_{a, i} \tag{15}
\end{equation*}
$$

$E\left(\varepsilon_{A}^{2}\right)=0$ and (seeEq. 12):

$$
\begin{equation*}
E\left(\varepsilon^{2}\right)=E\left(\varepsilon_{M C}^{2}\right) \tag{16}
\end{equation*}
$$

Further, assume that realizations $I_{\boldsymbol{i}}$ are independent. In this case, due to Eq. (15), fromEq. (13),

$$
\begin{equation*}
E\left(\varepsilon_{M C}^{2}\right)=\frac{E\left(I_{a}\right)-E\left(l_{a}^{2}\right)}{N_{M C}} . \tag{17}
\end{equation*}
$$

Consider random variables X and Y defined as follows:

$$
\begin{align*}
& \mathrm{X}=\frac{1}{T} \sum_{i=1}^{T} \varepsilon_{i}^{2}, \tag{18}\\
& Y=\frac{1}{N_{M C}}\left(\frac{1}{T} \sum_{i=1}^{T} I_{a, i}\left(1-I_{a, i}\right)\right) . \tag{19}
\end{align*}
$$

Due to Lindberg-Levy Central Limit Theorem [6], for large enough T, $X-\mathrm{E}\left(\varepsilon^{2}\right)$ has approximately normal distribution with zero mean and variance:

$$
\begin{equation*}
\sigma_{X}^{2}=\frac{\sigma^{2}\left(\varepsilon^{2}\right)}{T} . \tag{20}
\end{equation*}
$$

Similarly, for large enough T, $\boldsymbol{Y}-\boldsymbol{E}\left(\varepsilon_{M C}^{2}\right)$ has approximately normal distribution with zero mean and variance:

$$
\begin{equation*}
\sigma_{Y}^{2}=\frac{\sigma^{2}\left(I_{a}\left(1-I_{a}\right)\right)}{N_{M} N_{C}^{2}} . \tag{21}
\end{equation*}
$$

Therefore, a random variable

$$
\begin{equation*}
\mathrm{Z}=\mathrm{X}-\mathrm{Y}=\frac{1}{T} \sum_{i=1}^{T} \varepsilon_{i}^{2}-\frac{1}{N_{M C}}\left(\frac{1}{T} \sum_{i=1}^{T} I_{a, i}\left(1-I_{a, i}\right)\right), \tag{22}
\end{equation*}
$$

is asymptotically Gaussian, with zero mean and variance

$$
\begin{equation*}
\sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \sigma_{X Y} \tag{23}
\end{equation*}
$$

where $\sigma_{X Y}$ is a covariance defined [7] as:

$$
\begin{equation*}
\sigma_{X Y}=E(X) E(Y)-E(X Y) . \tag{24}
\end{equation*}
$$

Note that due to Eq. (16) and Eq. (19) we can write:

$$
\begin{equation*}
E(X)=E(Y)=\frac{1}{N_{M C} T} E(U), \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
U \equiv \sum_{i=1}^{T}\left(I_{a, i}\left(1-I_{a, i}\right)\right) \tag{26}
\end{equation*}
$$

On the other hand, a conditional expectation of product XY, given values of $I_{a, i} \boldsymbol{i}=\mathbf{1}, \ldots \boldsymbol{T}$ is:

$$
\begin{gather*}
E\left(X Y \mid I_{a, i} i=1, \ldots T\right)= \\
\frac{1}{N_{M C} T^{2}}\left(\sum_{i=1}^{T} I_{a, i}\left(1-I_{a, i}\right)\right) E\left(\sum_{i=1}^{T} \varepsilon_{i}^{2} \mid I_{a, i} i=1, \ldots T\right)= \\
\frac{1}{N_{M C} T^{2}}\left(\sum_{i=1}^{T} I_{a, i}\left(1-I_{a, i}\right)\right)\left(\sum_{i=1}^{T} E\left(\varepsilon_{i}^{2} \mid I_{a, i}\right)\right) . \tag{27}
\end{gather*}
$$

Due to Eq. (16), (15), (7) and (26) wefinally obtain:

$$
\begin{equation*}
E\left(X Y \mid I_{a, i} i=1, \ldots T\right)=\frac{1}{N_{M C}^{2} T^{2}} U^{2} \tag{28}
\end{equation*}
$$

FromEq. (28) directly follows:

$$
\begin{equation*}
E(X Y)=\frac{1}{N_{M}^{2} C^{T^{2}}} E\left(U^{2}\right) \tag{29}
\end{equation*}
$$

By combining Eq. (24), (25) and (29) we obtain:
$\sigma_{X Y}=\frac{1}{N_{M C^{2}}^{2}}\left[E^{2}(\boldsymbol{U})-E\left(U^{2}\right)\right]=-\frac{1}{N_{M C^{2}}^{2}} \sigma^{2}(\boldsymbol{U})$.
Note, however that $I_{a, i}$ are independent and identically distributed. Hence:

$$
\begin{equation*}
\sigma^{2}(U)=\sum_{i=1}^{T} \sigma^{2}\left(I_{a, i}\left(1-I_{a, i}\right)\right)=T \sigma^{2}\left(I_{a}\left(1-I_{a}\right)\right) \tag{31}
\end{equation*}
$$

and, fromEq. (30):

$$
\begin{equation*}
\sigma_{X Y}=-\frac{1}{N_{M C}^{2} T} \sigma^{2}\left(I_{a}\left(1-I_{a}\right)\right) . \tag{32}
\end{equation*}
$$

By combining Eqs. (20), (21), (23) and (32) we obtain:

$$
\begin{equation*}
\sigma_{Z}^{2}=\frac{\sigma^{2}\left(\varepsilon^{2}\right)}{T}+\frac{3 \sigma^{2}\left(I_{a}\left(1-I_{a}\right)\right)}{T N_{M C}{ }^{2}} . \tag{33}
\end{equation*}
$$

Assume that a numerical algorithm performing integration Eq. (2) is implemented. Consider a set of functions f_{i}, i, \ldots, T where the al gorithm provides an exact solution. Under H_{0} that the algorithm is correctly implemented, for large enough T, random variable Z defined by Eq. (22) has approximately Gaussian distribution with variance defined by Eq. (33). Hence, we can compute test statistic Z^{*} as:

$$
\begin{equation*}
Z^{*}=\frac{Z}{s_{Z}}, \tag{34}
\end{equation*}
$$

where s_{Z} is an estimate of σ_{z} :

$$
\begin{equation*}
s_{Z}=\sqrt{\frac{s^{2}\left(\varepsilon^{2}\right)}{T}+\frac{3 s^{2}\left(l_{a}\left(1-I_{a}\right)\right)}{T N_{M C}{ }^{2}}} \tag{35}
\end{equation*}
$$

and s denotes sample standard deviation (eg, $s\left(\varepsilon^{2}\right)=$ $\sqrt{\frac{1}{T-1} \sum_{i=1}^{T}\left(\varepsilon_{i}^{2}-\overline{\varepsilon^{2}}\right)^{2}}$ where $\left.\overline{\varepsilon^{2}}=\frac{1}{T} \sum_{i=1}^{T} \varepsilon_{i}^{2}\right)$.
We use two-sided test with the p-value cal cul ated as:

$$
\begin{equation*}
p-\text { value }=\frac{2}{\sqrt{2 \pi}} \int_{\left|Z^{*}\right|}^{\infty} e^{-\frac{t^{2}}{2} d t} \tag{36}
\end{equation*}
$$

and H_{0} is rejected if the p-value is smaller than a preset threshold (e.g., 0.005).

III. Software Verification

Consider random variables X (see Eq. (18)) and Y^{\prime} defined as follows:

$$
\begin{equation*}
Y^{\prime}=\frac{1}{N_{M C}-1}\left(\frac{1}{T} \sum_{i=1}^{T} I_{M C, i}\left(1-I_{M C, i}\right)\right) . \tag{37}
\end{equation*}
$$

It is obvious that X and Y^{\prime} represent unbiased estimates for $E\left(\varepsilon^{2}\right)$ and $E\left(\varepsilon_{M C}^{2}\right)$ based on observed T realizations of functions f_{i}.

Due to Lindberg-Levy Central Limit Theorem [6], $Y^{\prime}-$ $E\left(\varepsilon_{M C}^{2}\right)$ has approximately normal distribution with zero mean and variance $\sigma_{Y_{I}}^{2}=\frac{\sigma^{2}\left(l_{M C}\left(1-l_{M C}\right)\right)}{T\left(N_{M C}-1\right)^{2}}$. (Note that σ^{2} here denotes a variance of a random variable) Therefore, and due to Eq. (12), a random variableZ' defined as:

$$
\begin{gather*}
\mathrm{Z}^{\prime}=\mathrm{X}-\mathrm{Y}^{\prime} \\
=\frac{1}{T} \sum_{i=1}^{T} \varepsilon_{i}^{2}-\frac{1}{N_{M C}-1}\left(\frac{1}{T} \sum_{i=1}^{T} I_{M C, i}\left(1-I_{M C, i}\right)\right), \tag{38}
\end{gather*}
$$

is asymptotically Gaussian, with mean equal to $E\left(\varepsilon_{A}^{2}\right)$ and variance σ_{Z}^{2}, which square root is bounded as:

$$
\frac{1}{\sqrt{T}}\left|\sigma\left(\varepsilon^{2}\right)-\frac{\sigma\left(I_{M C}\left(1-I_{M C}\right)\right)}{N_{M C}-1}\right| \leq \sigma_{Z,} \leq \frac{1}{\sqrt{T}}\left(\sigma\left(\varepsilon^{2}\right)+\right.
$$

Hence, Z^{\prime}, as defined by Eq. (38) is a consistent estimate of $E\left(\varepsilon_{A}^{2}\right)$. The boundaries for standard deviation of the estimate can be obtained from Eq. (39) when a squared root σ of
variance is estimated using a sample standard deviation s [8] as:

$$
\begin{equation*}
s_{Z, \text { min }} \leq s_{Z,} \leq s_{Z, \text { max }} \tag{40}
\end{equation*}
$$

where:

$$
\begin{align*}
& s_{Z, \text { min }}=\frac{1}{\sqrt{T}}\left|s\left(\varepsilon^{2}\right)-\frac{s\left(I_{M C}\left(1-I_{M C}\right)\right)}{N_{M C}-1}\right|, \tag{41}\\
& s_{Z, \text { max }}=\frac{1}{\sqrt{T}}\left(s\left(\varepsilon^{2}\right)+\frac{s\left(I_{M C}\left(1-I_{M C}\right)\right)}{N_{M C}-1}\right) . \tag{42}
\end{align*}
$$

IV. Practical Application

The methods discussed in Sections III and IV are applicable whenever a set of values $I_{i} \in[0,1], i=1, \ldots, T$ can be approximated using the Monte Carlo approach (Section II and Eq. (4)) where N_{i} follows a Binomial distribution with expectation $N_{M C} I_{i}$ and variance $N_{M C} I_{i}\left(1-I_{i}\right)$. In this section, we discuss their use in partial volume computation $[4 ; 9 ; 10]$.
The problem of partial volume computation can be described as follows: Given a threedimensional unit voxel [0, $1]^{3}$ and surfaces $\mathrm{S}_{\mathrm{i}, \mathrm{I}} \mathrm{I}=1, \ldots, \mathrm{~S}$, find a measure I_{i} of volume bounded by the surfaces and the voxel boundaries (a partial volume). In [4], cases when $\mathrm{s}=1$ or $\mathrm{s}=2$ are discussed. Surfaces $\mathrm{S}_{\mathrm{i}, \mathrm{I}}$ are approximated using planes $\mathrm{P}_{\mathrm{i}, \mathrm{l}} \mathrm{I}=1,2$ and values I_{i} are approximated by measures $I_{a, i}$ of volumes bounded by the planes and the voxe boundaries. Note also that I_{i} can be estimated using the Monte Carlo approach by randomly placing N_{MC} points inside the unit voxd and counting the fraction, Eq. (4), of the number of points N_{i} fitting into a partial volume The surfaces S are depend on parameters which can be considered random It is easy to observe that the partial volume computation as defined here satisfies the assumptions from Sections II-IV.

Following the approach from Section III, we tested implementations of Algorithm A. 3 from [4]. We randomly generated T pairs of planes $\mathrm{P}_{\mathrm{i}, \mathrm{I}}, \mathrm{I}=1,2$ and cal culated measures $I_{a, i}$ using the implementation. We also estimated $I_{M C, i}$ using $N_{M C}$ and subsequently utilized Eqs. (22), (34)-(36) to test correctness of the implementation. The initial implementation was tested using $\mathrm{T}=10,000, N_{M C}=10,000$. The test resulted in $Z=2.847 e-04, s_{Z}=2.4383 e-05$ and p value $=1.6325 \mathrm{e} 31$. Hence H_{0} (that this implementation was correct) was rejected. Examination of the histogram of obtained values ε_{i} (Eq. (8)) indicated cases when the implementation did not work correctly. The subsequent (debugged) implementation was tested with a range of combinations of T and $N_{M C}$. The results, Table 1, consistently indicate that H_{0} cannot be rejected (p-value 0.2) which suggests the correctness of this implementation.
With the approach fromSection IV, we val idated Al gorithm A. 2 from [4] using $N_{M C}=63$, for voxels that contain simulated skin and ligaments/compartmental tissue, see Table 2. We recal culated Z^{\prime} (Eq. (38)), $s_{Z, \text { min }}$ (Eq. (41)) and $s_{Z, \text { max }}$ (Eq. (42)) for simulated breast phantom data from Table IV [4]. The comparison of Z^{\prime} with the corresponding values of sample means $\mathrm{MSE}_{\mathrm{A}}[4]$ shows that $\left|Z^{\prime}-\mathrm{MSE}_{\mathrm{A}}\right|<\mathrm{S}_{Z, \text {, min }}$ which indicates that $s_{Z, \text { min }}$ is accurately computed. Further, the
difference between the approximate quantization error $\mathrm{MSE}_{\mathrm{q}}=2.09 \mathrm{e}-5$ (as calculated in [4]) and $Z^{\prime}=1.952 \mathrm{e} 05$ is smaller than corresponding $s_{z, \text { min }}(1.622 \mathrm{e} 06)$. This justifies a hypothesis from [4] that the discrepancy between MSE_{q} and Z' can be explained by statistical fluctuations related to the Monte Carlo method.

TABLEI
Computed P-values for Statistical Test of Algorithm for Correct Implementation of Algorithm A.3 [4]Obtained for Different Combinations of Tand $\boldsymbol{N}_{\boldsymbol{M} \boldsymbol{C}}$

T	$1 e 6$	1 e 5	1 e 4	1 e	1 e 4	$5 e 6$	1 e 6	1 e 5
$N_{M C}$	$1 e 5$	$1 e 5$	$1 e 5$	1 e 4	1 e 4	10	10	10
p -value	0.971	0.831	0.242	0.966	0.987	0.615	0.574	0.846

TABLE II
Estimated Approximation error (mean and standard deviation boundaries) for Algorithm A.2[4]: $\boldsymbol{N}_{\boldsymbol{M C}}=\mathbf{6 3}$. MSE $_{\text {A }}$ FROM [4] CORRESPONDING TO Z' IS INCLUDED FOR COMPARISON

Voxds containing	T	Z^{\prime}	$S_{z r, \text { min }}$	$S_{Z, \text { max }}$	$\mathrm{MSE}_{\mathrm{A}}$
Skin	1,597,042	$\begin{gathered} 1.952 e \\ 05 \end{gathered}$	$\begin{gathered} 1.622 \mathrm{e} \\ 06 \end{gathered}$	$\begin{gathered} 3.927 e \\ 06 \end{gathered}$	$\begin{gathered} 2.01 \mathrm{e} \\ 05 \end{gathered}$
Ligaments and compartmental tissue	6,435,881	$\begin{gathered} 4.330 \mathrm{e} \\ 04 \end{gathered}$	$\begin{gathered} 1.191 e \\ 06 \end{gathered}$	$\begin{gathered} 2.368 e \\ 06 \end{gathered}$	$\begin{gathered} 4.32 \mathrm{e} \\ 04 \end{gathered}$

V. Discussion and Conclusions

We propose to utilize Monte Carlo method for software verification. We use Monte Carlo not to cal culate per se, but to validate the calculation's performance using another method. Hence the accuracy of the Monte Carlo approximation (that can be estimated using Eq. (14)) is of secondary importance.
We develop a statistic (Eq. (34)) that has a standard normal distribution under the hypothesis that an algorithm is implemented correctly. We demonstrated that the approach can be applied to a practical problem of testing numerical software for computation of partial volume In this case, manual evaluation of test cases needed to test a complex algorithmis not feasible
We utilize an important property that Monte Carlo and approximation errors are orthogonal (Eq. (10)) which results in the estimate of approximation error $\boldsymbol{E}\left(\varepsilon_{A}^{2}\right)$ (Eq. (38)). Assuming large enough number T of evaluations, we also demonstrated upper and lower bound for the standard deviation of the estimate (Eqs. (41), (42)). This distinguishes the proposed approach from other approaches that may provide only the point estimate of the approximation error. Note also that the proposed methods do not assume knowledge of correct values of the estimated variables I_{i} : instead, the knowledge of observable values ε_{i} and $I_{\mathrm{a}, \mathrm{i}}$ is [9] F. Chen, D. Pokrajac, X. Shi, F. Liu, A.D.A. Maidment, P. Bakic, "Simulation of Three Materials Partial Volume Averaging in a Software Breast Phantom," Proc. IWDM, pp. 149-156, 2012.
sufficient. We demonstrated this approach on verification of software for partial volume computation [4]. We showed that the discrepancy between the theoretically minimal approximation error (due to quantization) and the approximation error estimated there can be explained by the standard deviation of theestimate
The proposed methodology is developed for a relatively narrow class of multiple integration problems. However, as demonstrated on computation of partial volumes, the approach can be easily extended whenever the estimation using an analog of Eq. (4) is possible and where N_{i} follows binomial distribution (see Section II).

In Table I we demonstrated that the choice of N_{MC} does not seem to be of predominant importance for software testing. Work in progress includes quantitative investigation of influence of N_{MC} on estimation of $E\left(\varepsilon_{A}^{2}\right)$.

Acknowledgement

This project was supported by a grant from the National Institute of General Medical Sciences (P20 GM103446) from the National Institutes of Health. Also, the work was supported in part by the US National Institutes of Health (RO1 grant \#CA154444), the US Department of Defence Breast Cancer Research Program (HBCU Partnership Training Award \#BC083639), the US National Science Foundation (CREST grant \#-HRD-0630388 and III grant \#0916690), and the US Department of Defence/Department of Army (45395-MA-ISP, \#54412-CI-ISP, W911NF-11-2-0046).

References

[1] G. J. Myers, The Art of Software Testing, New Jersey, John Wiley \& Sons Inc, 2004.
[2] R. L. Burden, J. Douglas Faires, Numerical Analysis, Massachusetts, Brooks/Cole Cengage Learning, 2010.
[3] N. Metropolis, "The Beginning of the Monte Carlo Method", Los Alamos Science Vol. 15, No. 12, pp. 125-130, 1987.
[4] F. Chen, P. R. Bakic, A. D.A. Mai dment, S. T. Jensen, X. Shi, D. D. Pokrajac, "Description and Characterization of a Nove Method for Partial Volume Simulation in Software Breast Phantoms," IEEE TMI, 2015, in press, doi: 10.1109/TMI.2015.2424854.
[5] R. Y. Rubinstein, D. P. Kroese, Simulation and The Monte Carlo Method, New Jersey, Wiley Interscience, 2007.
[6] J. W. Lindeberg, "Eine Neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung", Math. Z, Vol. 15, No. 1, pp. 211-225, 1922 (German). MR 1544569, http://dx.doi.org/10.1007/BF01494395.
[7] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, New Y ork, John Wiley \& Sons, 1984.
[8] J. Devore, Probability and Statistics for Engineering and the Sciences, Massachusetts, Brooks/Cole Cengage Leaming, 2012.

[^0]: ${ }^{1}$ David Pokrajac and Abdullah-AI-Zubaer Imran are with Delaware State University, 1200 N DuPont Hwy, Dover, DE, US, Email: \{dpokrajac@desu.edu, aimran14@students.desu.edu\}.
 ${ }^{2}$ Predrag Bakic is with University of Pennsylvania, Department of Radiology, 3400 Spruce Street, Philadelphia, PA, US, Email: predrag.bakic@uphs.upenn.edu

